
Cluster synchronization in star-like complex networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 155101

(http://iopscience.iop.org/1751-8121/41/15/155101)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/15
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 155101 (12pp) doi:10.1088/1751-8113/41/15/155101

Cluster synchronization in star-like complex networks

Zhongjun Ma1, Gang Zhang2,3, Yi Wang4 and Zengrong Liu5

1 School of Mathematics and Computing Science, Guilin University of Electronic Technology,
Guilin 541004, People’s Republic of China
2 Department of Mathematics, Shijiazhuang College, Shijiazhuang 050035, People’s Republic of
China
3 College of Mechanical Engineering and Applied Electronics Technology, Beijing University of
Technology, Beijing 100022, People’s Republic of China
4 Zhejiang University of Finance and Economics, Hangzhou 310012, People’s Republic of China
5 College of Sciences, Shanghai University, Shanghai 200444, People’s Republic of China

E-mail: mzj1234402@163.com

Received 27 November 2007, in final form 8 March 2008
Published 2 April 2008
Online at stacks.iop.org/JPhysA/41/155101

Abstract
The cluster synchronization of a star-like complex network which consists
of N nodes coupled with a common environment is discussed. By using the
matrix theory and the Lyapunov function approach, a sufficient condition about
the existence and asymptotic stability of a cluster synchronization invariant
manifold is derived. The effectiveness of the sufficient condition is illustrated
by two examples. In addition, the two examples also show that, in the star-like
complex network in which the individual node is chaotic (or non-chaotic), the
dynamics of some nodes in the cluster synchronization invariant manifold can
be non-chaotic (or chaotic).

PACS numbers: 05.45.Xt, 05.45.Vx
Mathematics Subject Classification: 34C28, 93C10

1. Introduction

Synchronization phenomena have attracted increasing attention from various fields of science
and engineering today. Many types of synchronization [1–14] have been introduced
and researched: complete or identical synchronization, phase synchronization, cluster
synchronization and so on. Recently, the propensity for synchronization has been studied
in a complex network with directed and weighted links [4, 5]. In addition, an effective method
to determine some possible states of cluster synchronization and to ensure their stability
is presented for a given nearest-neighborhood network with zero-flux or periodic boundary
conditions in [15, 16]. Moreover, a new general method to determine the stability of complete
synchronization in networks with different topologies is proposed in [17]. This method
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combines the Lyapunov function approach with the graph theoretical reasoning. Based on [17],
a novel method [12], which constructs a coupling scheme with cooperative and competitive
weight couplings, is used to stabilize arbitrarily selected cluster synchronization patterns with
several clusters for connected chaotic networks. In these studies, the master stability function
analysis [7] is used to derive a sort of local stability criterion, which is a necessary condition
of synchronization; the Lyapunov function approach is used to derive a sort of global stability
criterion, which is a sufficient condition of synchronization.

Particularly, cluster synchronization is considered to be significant in communication
engineering [13] and biological sciences [14], for example, clustering in the networks consist
of coupled cells or functional units which have a complicated nonlinear behavior. Cluster
synchronization in networks is observed when the network of oscillators splits into subgroups,
called clusters, such that the oscillators within one cluster in synchrony move but the motion
of different clusters is not synchronized at all. That is to say, the N nodes in a network split into
n clusters, such that lim

t→∞ ‖xi (t, x0) − xj (t, x0)‖ = 0 holds for the states xi (t, x0), xj (t, x0)

corresponding to arbitrary node indices i, j in the same cluster and arbitrary initial states
x0 = (x1(0), . . . , xN(0)) but for arbitrary nodes indices k, l in any two distinct clusters, there
exist y0 = (y1(0), . . . , yN(0)) such that lim

t→∞ ‖xk(t, y0) − xl(t, y0)‖ �= 0 holds for the states

xk(t, y0) and xl (t, y0). When the number of clusters is 1, cluster synchronization turns into
complete synchronization.

Up till now, many studies [15–22] about complete synchronization and cluster
synchronization focus on the network consisting of linearly coupled identical systems

ẋi = f(xi ) + ε

N∑
j=1

cij (t)Pxj , i = 1, . . . , N, (1)

where xi = (
x1

i , . . . , xm
i

)T
is the m-dimensional state variable of the ith node and N is

the total number of nodes. The nonzero elements of the m × m matrix P determine
the coupling components among the states of nodes. Usually, for simpleness and clarity,
P = diag(p1, p2, . . . , pm), where ph > 0 for h = 1, . . . , s and ph = 0 for h = s + 1, . . . , m.
ε > 0 is the coupling strength. The coupled matrix C = (cij (t)) is a N × N real symmetric
matrix reflecting the network topology. In the studies, C is always diffusive (i.e., the sum of
all elements in each row is equal to zero), and usually, C is a constant matrix. It is well known
that a diffusively coupled matrix has an eigenvalue 0. In an appropriate network topology
[12, 15, 22] with diffusive couplings, the eigenvalue 0 of the matrix C can be associated with
an eigenvector (1, 1, . . . , 1)T or associated with n eigenvectors ξi = (α1i , . . . , αni)

T , where
αki ∈ Rmk ,

αki =
{
(1, 1, . . . , 1), if k = i

(0, 0, . . . , 0), otherwise,

then M∗ = {x1 = x2 = · · · = xN } or {x1 = x2 = · · · = xm1 , . . . , xm1+···+mn−1+1 = · · · = xN }
is an invariant manifold of network (1). Here, the network dynamics in the invariant manifold
M∗ is {ẋ1 = f(x1), x1 = x2 = · · · = xN } or

{
ẋm1 = f(xm1), x1 = x2 = · · · =

xm1

}×{
ẋm1+m2 = f(xm1+m2), xm1+1 = · · · = xm1+m2

}×· · ·×{
ẋN = f(xN), xm1+···+mn−1+1 =

· · · = xN

}
, and obviously, unrelated to the coupling strength ε. If the invariant manifold is

asymptotically stable under some conditions, network (1) realizes complete synchronization
or cluster synchronization.

In this paper, we consider the star-like complex network

ẋi = f(xi ) + ε(−ciPxi + u(v(t), x1, . . . , xN)), i = 1, . . . , N, (2)
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Figure 1. A star network with a hub node.

Figure 2. A star network with two hub nodes.

where xi is the m-dimensional state variable of the ith node and N is the total number of nodes.
The nonzero elements of the m × m matrix P determine the self-coupling components in the
states of nodes. Both f(•) and u(•) are vector functions. ε > 0 is the coupling strength
parameter.

For network (2), ẋi = f(xi ) describes the dynamics of the individual node. u(•) can
be regarded as an environment state variable which depends on the node states x1, . . . , xN

and other influence factor v(t), and then the state variables of any two nodes are indirectly
interacted with each other by a common environment state variable u(•). Therefore,
network (2) is a star-like network in which u(•) is the state variable of the hub node.
ε(−ciPxi + u(v(t), x1, . . . , xN)) indicates the influences of both the state of the ith node
and the environment state on the dynamics of the ith node under coupling actions. It is
reasonable that, to a common environment, the response coefficient ci may be the same as or
different from the response coefficient cj .

Many networks can be described as network (2). For example, all cells in a tissue form
a cell network. In the cell network, the dynamics of any individual cell obeys the same laws;
all cells interact with a common environment which depends not only on the cells but also on
the other influence factors. In the environment, the response coefficient of the ith cell may be
the same as or different from the response coefficient of the j th cell. Network (9) in [23] is a
special case of network (2).

Obviously, when u(•) = Pu1(x1, . . . , xN), where u1(x1, . . . , xN) is a linear function
about x1, . . . , xN , network (2) is a special case of network (1). Particularly, when
u1(x1, . . . , xN) is x1, x1 + x2 or x1 + x2 + · · · + xN , the corresponding network is a star
network with a hub node and unidirectional couplings, a star network with two hub nodes
and asymmetrical couplings or a globally coupled network (see figures 1–3 when N = 5). In
addition, u(•) can be nonlinear also.

3
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Figure 3. A globally coupled network.

2. Cluster synchronization in the star-like network

First, we give the following hypothesis.

Hypothesis 1. Assume that f(•) satisfies f(xj ) − f(xi ) = Axi ,xj
(xj − xi ) for a bounded

matrix Axi ,xj
with elements depending on xi and xj .

Apparently, if f(•) satisfies the Lipschitz condition, then hypothesis 1 holds. Note
that many neural networks and chaotic dynamical systems, such as Chua’s circuit, satisfy
hypothesis 1.

Among ci, i = 1, . . . , N , there may exist i and j such that ci = cj . Accordingly,
without loss of generality, we assume c1 = c2 = · · · = cm1 , . . . , cm1+m2+···+mn−1+1 = · · · = cN .
Therefore, M∗ = {

x1 = · · · = xm1 , . . . , xm1+···+mn−1+1 = · · · = xN

}
is an invariant manifold

of network (2). Let eij = xj − xi . By (2), for all i, j which satisfy ci = cj , we have

ėij = f(xj ) − f(xi ) − εciP eij = (
Axi ,xj

− εciP
)
eij . (3)

Using the Lyapunov function approach, we obtain the following.

Theorem 1. Under hypothesis 1, if c1 = c2 = · · · = cm1 , . . . , cm1+m2+···+mn−1+1 = · · · = cN

and if there exists a positive definite symmetric matrix Q such that(
Ax1,x2 − εciP

)T
Q + Q

(
Ax1,x2 − εciP

)
< 0 (4)

holds for arbitrary i, x1, x2, then the invariant manifold M∗ of network (2) is asymptotically
stable.

Proof. Using (4), for arbitrary i, j ,(
Axi ,xj

− εciP
)T

Q + Q
(
Axi ,xj

− εciP
)

< 0 (5)

holds. Choose the Lyapunov function of the form

V =
∑
ci=cj

eT
ijQeij .

Then, by (5), its time derivative with respect to (3) is

V̇ =
∑
ci=cj

eT
ij

[(
Axi ,xj

− εciP
)T

Q + Q
(
Axi ,xj

− εciP
)]

eij < 0.

Based on the Lyapunov stability theory, (3) is asymptotically stable about zero, i.e., the
invariant manifold M∗ of network (2) is asymptotically stable. This completes the proof of
theorem 1. �

Specially, when Q is an identity matrix I, we have the following.

4
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Corollary 2. Under hypothesis 1, if c1 = c2 = · · · = cm1 , . . . , cm1+m2+···+mn−1+1 = · · · = cN

and if (
AT

x1,x2
+ Ax1,x2

) − εci(P
T + P) < 0 (6)

holds for all i, x1, x2, then the invariant manifold M∗ of network (2) is asymptotically stable.

Remark 1. By theorem 1 and corollary 2, it is easy to see that the matrix P can be non-diagonal,
even asymmetrical.

Remark 2. Based on the linear algebra theory, if every ci > 0 and P T + P is positive definite,
then there is ε0 such that (6) holds for ε > ε0.

Remark 3. In the diffusively coupling network (1), the dynamics of the nodes in the invariant
manifold M∗ is unrelated to the coupling strength ε and the coupling matrix C reflecting the
network topology, and then the uncoupled dynamics describe the synchronized state. However,
in network (2), the dynamics of the nodes in the invariant manifold M∗ can depend on the
coupling strength ε and the environment state variable u(•). Generally speaking, it is very
complicated. Here, the uncoupled state does not describe the synchronized dynamics and
stable clusters are selected for using the ci terms.

If the conditions in theorem 1 hold, the N nodes in network (2) split into n clusters
and the sets of subscripts of the n clusters are G1 = {1, 2, . . . , m1}, . . . ,Gn = {m1 + · · · +
mn−1 + 1, . . . , N}, where N = m1 + m2 + · · · + mn. The oscillators within one cluster in
perfect synchrony move. Generally, the motion of different clusters is not synchronized.
Therefore, cluster synchronization is achieved and the cluster synchronization threshold is
related to the response coefficient ci rather than unrelated to the environment state variable
u(•). However, when an invariant submanifold in the invariant manifold M∗ is asymptotically
stable, the motion of two different clusters may be synchronized, i.e., two different clusters
may incorporate a bigger cluster. It is indicated by the following examples.

3. Two examples

In [23], a special case of network (2) (ci = cj for any i and j, u(•) depends on all xi) is
investigated. Here, two special examples, in which u(•) only depends on x1, are used to
illustrate theorem 1 and corollary 2. In example 1, u(•) is linear; but in example 2, u(•) is
nonlinear.

Example 1. We consider network (2) which is consisted of N coupled Chua’s circuits (N = 4).
The individual Chua’s circuit [24] is described by

ẋi = α(yi − xi − g(xi)), ẏi = xi − yi + zi,
(7)

żi = −βyi, i = 1, . . . , 5,

where α > 0, β > 0 are parameters, g(xi) = bxi + 1
2 (a−b)(|xi +1|−|xi −1|) with a < b < 0.

When c1 = c2 = 1, c3 = c4 = 1.1, u(•) = (0.99x1, 0.99y1, 0.99z1)
T and P = diag(1, 1, 1),

network (2) reads

ẋi = α(yi − xi − g(xi)) + 0.99εx1 − ciεxi,

ẏi = xi − yi + zi + 0.99εy1 − ciεyi, (8)

żi = −βyi + 0.99εz1 − ciεzi, i = 1, . . . , 4.

5
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Figure 4. Chaotic attractor in the individual Chua’s circuit.

By a simple analysis, we obtain

g(xj ) − g(xi) = lxi ,xj
(xj − xi),

where lxi ,xj
depends on both xi and xj , and a � lxi ,xj

� b:

Axi,xj
=

⎛
⎝−α(1 + lxi ,xj

) α 0
1 −1 1
0 −β 0

⎞
⎠ .

Therefore,

(
AT

xi ,xj
+ Axi,xj

) − εci(P
T + P) =

⎛
⎝−2α

(
1 + lxi ,xj

) − 2ciε 1 + α 0
1 + α −2 − 2ciε 1 − β

0 1 − β −2ciε

⎞
⎠ .

Based on the well-known Gershgorin disk theorem [25] in the matrix theory, when

ε > ε0 = max
{−α

(
1 + lxi ,xj

)
+ |1 + α|/2,−1 + |1 − β|/2 + |1 + α|/2, |1 − β|/2

}
,

condition (6) holds. By corollary 2, the invariant manifold M∗ of network (8) is asymptotically
stable.

To check the theoretical results, we calculate numerically the errors

eij = max
1�i<j�4

{|xj − xi |, |yj − yi |, |zj − zi |}

for coupled Chua’s circuits, with environment state variable u(•) = (0.99x1, 0.99y1, 0.99z1)
T ,

parameters α = 10, β = 15, a = −1.31, b = −0.75, ε = 11.6(>ε0 = 11.5) and the random
initial conditions (xi(0), yi(0), zi(0)) in the region (−1, 1) × (−1, 1) × (−1, 1).

By the aid of Mathematica 4, we obtain figures 4–9. Figure 4 corresponds to the
chaotic attractor of Chua’s circuit when the coupling strength parameter ε is equal to
zero. Figures 5 and 6 show the time evolution of (x1, y1, z1) and (x3, y3, z3) in network
(8) (ε = 11.6, u(•) = (0.99x1, 0.99y1, 0.99z1)

T , c1 = c2 = 1, c3 = c4 = 1.1 and
P = diag(1, 1, 1)). In figures 7–9, the evolution of the errors eij is illustrated. It is very
easy to see the errors eij → 0 when t → ∞ if i and j are the indices in the subscript set of a
cluster but the errors eij � 0 when t → ∞ if i and j are the indices in the subscript sets of
two different clusters. That is to say, the 2-cluster synchronization in network (8) is realized.

6
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Figure 5. The time evolution of (x1, y1, z1) in network (8).
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Figure 6. The time evolution of (x3, y3, z3) in network (8).

0.2 0.4 0.6 0.8 1
t

0.2

0.4

0.6

0.8

1
e12

Figure 7. The time evolution of e12 when ε = 11.6.

On second thoughts, we investigate the synchronization states of network (8) when
ε � 2000 and other conditions are retained. It is showed by some simple calculations that
network (8) has a globally asymptotic stable equilibrium (0, 0, 0, 0)T , where 0 = (0, 0, 0).
The state of any node (xi, yi, zi) approaches 0 when t → ∞. Here, cluster synchronization
turns into complete synchronization. In figures 10–12, the evolution of the errors eij is

7
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Figure 8. The time evolution of e34 when ε = 11.6.
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Figure 9. The time evolution of e13 when ε = 11.6.
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t
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0.25

e12

Figure 10. The time evolution of e12 when ε = 2000.

illustrated for ε = 2000 and the random initial conditions (xi(0), yi(0), zi(0)) in the region
(−1, 1) × (−1, 1) × (−1, 1). It is very easy to see the errors eij → 0 when t → ∞.

The example highlights that, in the star-like network (8) in which the individual node is
chaotic, the dynamics of the nodes in the invariant manifold M∗ can be chaotic or non-chaotic.
It depends on the coupling strength parameter ε and the environment state variable u(•) and
the response parameter ci . In addition, two different clusters may incorporate a bigger cluster.

Example 2. We consider network (2) which is consisted of N coupled linear systems (N = 4).
The individual system is described by

ẋi = 10(yi − xi), ẏi = 28xi − yi,
(9)

żi = − 8
3zi, i = 1, . . . , 4.

8
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Figure 11. The time evolution of e34 when ε = 2000.
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Figure 12. The time evolution of e13 when ε = 2000.
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Figure 13. The time evolution of e12 when ε = 19.

In network (2), P = diag(1, 1, 0), c1 = c2 = 1, c3 = c4 = 1.1 and u(•) = (x1, y1 −
1

19x1z1,
1
19x1y1)

T . Network (2) reads

ẋi = 10(yi − xi) + ε(−cixi + x1), ẏi = 28xi − yi + ε(−ciyi + y1) − 1
19εx1z1,

żi = − 8
3zi + 1

19εx1y1, i = 1, . . . , 4. (10)

Because

Axi,xj
=

⎛
⎝−10 10 0

28 −1 0
0 0 − 8

3

⎞
⎠ ,

9
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Figure 14. The time evolution of e34 when ε = 19.
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Figure 15. The time evolution of e13 when ε = 19.
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Figure 16. The time evolution of (x1, y1, z1) in network (10).

hypothesis 1 holds. Based on the Gershgorin disk theorem [25], condition (6) holds when
ε > 18. By corollary 2, the invariant manifold M∗ of network (10) is asymptotically stable.

By the aid of Mathematica 4, when ε = 19, we obtain figures 13–15 for the random initial
conditions (xi(0), yi(0), zi(0)) in the region (0, 10) × (0, 10) × (0, 10). Figures 16 and 17
show the time evolution of (x1, y1, z1) and (x3, y3, z3) in network (10). In figures 13–15, the
evolution of the errors eij is illustrated. It is very easy to see that, when t → ∞, the errors

10
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Figure 17. The time evolution of (x3, y3, z3) in network (10).

e12 → 0 and e34 → 0 but the error e13 � 0. That is to say, the 2-cluster synchronization in
network (10) is realized. The effectiveness of the theoretic results is illustrated.

Apparently, when ε = 19, the dynamical equation of the first node in network (10) is
the Lorenz system. The example highlights that, in the star-like network (2) in which the
individual node is non-chaotic, the dynamics of some nodes in the invariant manifold M∗ can
be chaotic. Usually, this phenomenon is said to be emergence.

4. Conclusion

In this paper, we investigate the cluster synchronization of a star-like network which is
consisted of N nodes coupled with a common environment. By the use of the matrix theory
and the Lyapunov function approach, a sufficient condition about the existence and stability
of a cluster synchronization invariant manifold M∗ is obtained. In some cases, an invariant
submanifold in the cluster synchronization invariant manifold may be stable. That is to say,
two different clusters may incorporate a bigger cluster. Whereas in usual synchronization
theory the uncoupled dynamics describe the synchronized state; here the uncoupled state does
not describe the synchronized dynamics, which depends on the coupling strength parameter,
and stable clusters are selected for using the ci terms. Then, the effectiveness of our theoretic
results is illustrated by two examples. The first example shows that, in the star-like network
(2) in which the individual node is chaotic, the dynamics of the nodes in the invariant manifold
M∗ can be chaotic or non-chaotic. The second example highlights that, in the star-like network
(2) in which the individual node is non-chaotic, some nodes in the invariant manifold M∗ can
emerge chaotic dynamics.
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